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A computer model for Vycor glass using the three-dimensional Ising model with long range interac-
tions is presented. The effect of the interaction range on the resulting Vycor microstructure is also inves-
tigated by measuring the pore size distribution for the ¢ =6 (nearest neighbor) as well as longer-range in-
teraction, i.e., g=26 and 124 Ising models. The discrepancy between the nearest-neighbor Ising model
and the experimental results is interpreted in terms of a lattice-induced interfacial energy anisotropy.
The influence of the range of interaction on the degree of interfacial energy anisotropy is illustrated by
means of two- and three-dimensional Wulff plots (interfacial energy versus interface orientation) for each
of the ranges of interaction considered. The shape of the pore size distributions obtained from the
longer range Ising models is in agreement with the experimental results. However, the simulation distri-
butions display a shift in the peak location observed as compared to the experimental distribution. The
shift in peak location present in the simulation results is explained by a relative abundance of short
chords combined with a lack of the large chords, with respect to the experimental results. This abun-
dance of short chords is attributed to the interface roughness introduced by the longer range interaction,
while the lack of large chords is attributed to the finite lattice sizes used in this study. A minimum sys-
tem size and maximum interaction range are suggested, which should lead to a pore size distribution in
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close agreement with experimental results.

PACS number(s): 05.50.+q, 68.45.—v, 81.35.+k, 47.55.Mh

I. INTRODUCTION

Porous solids are critical to a variety of industrial ap-
plications, such as separation, oil recovery, heterogene-
ous catalysis, and even glass or ceramic processing [1].
Examples of such solids include polymer gels [2], polymer
[3] and ceramics [4] membranes, cementitious materials
and sedimentary rocks [2]. The common feature to all
these materials is that they are complex interfacial media,
i.e., they consist of two interpenetrating percolating
phases: a solid and a porous phase having large surface
to volume ratio. The presence of this large portion of in-
terface between the pore and the solid phase introduces
confinement, disorder, and often interactions such as wet-
ting forces (adsorption), all of which may have a strong
influence on the thermodynamics and/or the kinetics of
processes taking place inside of such media [5]. In order
to augment our understanding of the structure-property
relationships for such materials, as well as eventually
have the ability to synthesize by design porous materials
with the desired selectivity, permeability, reactivity, or
even catalytic properties, the first step and challenge is to
characterize the morphology of such solids. The tech-
niques used for this purpose are small angle (x-ray [6] or
neutron [7] scattering (SAS), microscopy [6], molecular
adsorption-desorption [8], and thermoporometry [9], to
name a few. SAS probes the mass distribution correla-
tions at various length scales, by measuring the structure
factor. Direct mass distribution observation by way of an
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optical or electron microscope yields a chord size distri-
bution. A chord is a linear path or segment comprised ei-
ther inside the pore phase (pore chord) or inside the silica
(solid chord) phase, connecting two distinct sites on the
interface.

Vycor is a porous glass manufactured by Corning. The
process for making this material begins with a high tem-
perature single-phase melt of silica and boron oxide. The
mixture is then quenched below its critical point, leading
to the formation of silica rich and boron rich phases via
spinodal decomposition. After some period of time, the
obtained structure is quenched below the glass transition
temperature, and the phase separation process ceases.
The boron phase is subsequently leached out by acid, re-
sulting in the final product, with a porosity of roughly
0.30. Vycor glass has recently been extensively studied
[6-10] as a model material, for it possesses characteris-
tics in common with porous materials of technological in-
terest. Concurrently, the issue of how a porous medium
alters the process of phase separation of a binary liquid
mixture has also prompted a considerable amount of ex-
perimental [11-15] and theoretical [16—24] work. In
these experiments, which focused on Vycor as a model
porous medium, strong kinetics retardation as well as the
absence of critical fluctuations in the vicinity of the criti-
cal point were observed. On the other hand, the theoreti-
cal and simulation work has provided useful but limited
insight, since it has been carried out on idealized models.
In particular, computer studies have been restricted to
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two-dimensional interconnected tunnels [22], or a strip
[24], or to a single pore in 3D [21], for lack of a reliable
computer model of Vycor. The first objective of this
work is to obtain a realistic computer model of Vycor, so
theoretical understanding of the phase separation of
liquid mixtures can be advanced by enabling the process
to be simulated in a computer-generated 3D sample of
porous medium with the same morphology as Vycor.

Since Vycor is produced by spinodal decomposition, it
should be possible to obtain a computer model for Vycor
using a coarse-grained model. However, realistic models
for silica and boron oxide undergoing spinodal decompo-
sition for all but the smallest samples, i.e., a few hundred
atoms, is not feasible. The simplest model which shows
spinodal decomposition is the Ising model. However,
there exists two problems with this model. The first
problem concerns the finite size of the lattice (i.e., how
large a lattice is needed in order to obtain a statistically
significant computer sample of Vycor). The second prob-
lem is related to the range of interaction, which if too
short, causes high interface energy anisotropy [25]. This
latter problem is of more serious concern, because a
strong lattice-induced interfacial energy anisotropy re-
sults in a microstructure quite different than the one
occurring in real systems, where the interfacial energy is
isotropic. The approach followed in this work is to
reduce the anisotropy of the 3D nearest-neighbor Ising
model by extending the range of interaction, namely,
from g =6 to 26 and 124 neighbors. The former problem
is addressed by using as large a lattice as possible, in this
case 1283,

Crossley, Schwartz, and Banavar [26] developed a new
class of three-dimensional (3D) geometrical models of
porous media, based on the smoothing of random white
noise images. However, these models suffer from the
drawback of involving unknown smoothing parameters.
One must therefore know beforehand the experimental
results for the structure or transport properties in order
to adjust these parameters. If the experimental informa-
tion is already available, their approach is the easiest way
to generate large computer samples of porous media,
with linear sizes L =256 or more. In addition to the Is-
ing model with conserved dynamics, other models which
have been successfully used to investigate phase-ordering
dynamics of first-order phase transitions include the
coarse-grained Langevin model [27] and a cell dynamics
version of model B [28]. Another interesting approach,
the lattice-Boltzmann model [29], simulates the time evo-
lution of immiscible fluids. Even though these models
constitute valid approaches to obtain a computer model
for “spinodally decomposed” solids such as Vycor, we
have exclusively considered the 3D Ising model with
longer range interactions so our findings can potentially
be related to the considerable amount of Monte Carlo
(MC) data on first-order phase transitions [30].

Binder and Stauffer [31] made the first theoretical pre-
diction of the existence of a regime where the structure
factor should exhibit scaling with respect to time. Most
MC studies of scaling in first-order phase transitions have
been carried out using the nearest-neighbor Ising model.
Most of these studies [30,32] support scaling, as well as
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an asymptotic time dependence of the characteristic
length, i.e., the inverse of the wave vector k~'(¢) at the
peak of the structure factor, varying as t¢!/3 for a con-
served order parameter [33]. Some experimental results,
however, show departures from this growth law [32].
Another study by Laradji and co-workers [34], investigat-
ing the dynamics of first-order phase transitions in 2D Is-
ing models with a nonconserved order parameter but
with long-range interactions, demonstrated the influence
of the interaction range on the time of validity of the
linear theory of spinodal decomposition. Their results
support the predicted asymptotic scaling exponent of
for a nonconserved order parameter independently of the
interaction range chosen, as expected. The asymptotic
behavior in the case of a conserved order parameter has
been examined by Annett and Banavar [35] using an ac-
celerated algorithm in which the global conservation of
the order parameter is ensured by a Creutz demon [36].
This numerical simulation tehnique is a deterministic
method due to Creutz. The demon and the lattice form a
closed, isolated system with total magnetization M. Let
M, be the demon magnetization and M; be the lattice
magnetization. The demon generates a succession of
configurations by distributing spins over the lattice, such
that M; and M, can vary, with M, <<M;, but
M=M,+M, must remain constant. A spin flip can be
viewed as being equivalent to performing spin exchanges
over very large ranges of interactions. They found an
asymptotic growth exponent of 1, which seems to suggest
that systems with global conservation laws are in the
same dynamic universality class as systems with no con-
servation laws. However, as the asymptotic growth ex-
ponent is indeed a property of the dynamical universality
class, the range of interaction must affect nonuniversal
amplitudes of the structure factor. Besides providing a
computer model for Vycor, the second objective of this
work is to develop a more physical picture for this idea
by investigating the influence of the range of interaction
on the microstructure itself, resulting from a spinodal
decomposition process (conserved order parameter). This
investigation is carried out in real space (as opposed to
momentum space), as the microstructure is probed by
way of the chord size distribution. As will be shown
below, the physical picture brought in this work is based
on the relation between the interaction range and the de-
gree of anisotropy in the interfacial energy of the Ising
model.

The organization of this paper is as follows: Sec. II de-
scribes the simulation model, as well as the procedure
used to fabricate a sample of Vycor in the computer and
to measure its chord size distribution. Section III de-
scribes how the interaction range in the Ising model is re-
lated to the degree of interfacial energy anisotropy, and
presents the simulation results. Section IV summarizes
our findings, and discusses our plans for future work.

II. SIMULATION MODEL

We briefly review the Ising model with long-range in-
teractions. The demonstration of the unsuitability of the
Ising model with nearest-neighbor interactions as a com-
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puter model of Vycor is postponed to the next section.
We make use of a three-dimensional simple cubic lattice
with a spin o; at each vertex, where i labels the vertex,
o;==1, and q, is the lattice spacing. The Hamiltonian
for the 3D Ising model with N =L 3 sites is
H=—3Jj0,0;. 2.1

(ij)

We use the equivalent neighbor model of Domb and
Dalton [37] in Eq. (2.1), which was introduced as a way
to bridge the gap between infinite range interaction (mean
field theory) and short-range interactions. The interac-
tion constant J;; is modeled by a square well potential:
Ji; is equal to J >0 for all neighboring spins within a cer-
tain interaction range R and is zero for spins outside this
range R. The lattice coordination number,
g¢=(2R +1)>*—1 is therefore the number of lattice sites
inside the square well. We consider two different ranges
of interactions in this work, namely, ¢ =26 (R =1) and
g =124 (R =2). The product ¢/ is kept fixed, such that
the limit g — o, J—0 the model corresponds to the limit
of mean field theory. Equation (2.1) becomes

1Y 3
2% 2
i=1 j€Enbh(i)
where the summation of the first term is over all different
gN /2 neighbor pairs {ij). Note that the Ising model
with nearest-neighbor interactions has a lattice coordina-
tion number ¢ =6, and a critical point [38] at
kgT./J ~4.50, where kg is the Boltzmann constant.
Periodic boundary conditions are imposed in all three
directions. The systems considered in this work have
linear size L =64 and 128. The initial configuration is
obtained by distributing at random the silica phase (70%)
and the boron oxide phase (30%). The simulations using
this initial configuration as a starting point are performed
in the canonical ensemble, i.e., the concentration of each
species is kept constant. We therefore make use of a
more efficient variation of the Kawasaki algorithm,
where pairs within the neighborhood defined by the in-
teraction range are exchanged with the following proba-
bility:

pi=

Jo;o; 2.2)

i~jo

0 otherwise (2.3a)
and acceptance rate
A YV s exp(—BF{o’'}) e
({o}—{o'})=min [1, exp(—BH{c}) (2.3b)
where B=1/kgT, and o' represents the spin

configuration resulting from the exchange, with o;=0;
and 0;=0;.

The system was quenched to T =0.45T,, where T is
the bulk critical point for the 3D Ising model with g =6.
This leads to the formation of a silica rich and boron-
oxide-rich structure, by spinodal decomposition. If the
simulation data are to be compared to the experimental
results, then the spinodal decomposition process must be
in the scaling regime, i.e., where the length scale of the
problem (the average pore size) is much greater than the
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correlation length (which is no more than one or two lat-
tice spacings a,). The simulation is stopped at seven
different times to obtain configurations in the scaling re-
gime. We discuss below the criteria used to ensure that
the selected configurations were in the scaling regime.
Each configuration is further quenched another 1000
MCS (Monte Carlo Step per spin) at a very low tempera-
ture T~0.1T,. The purpose of this second quench is to
eliminate as much roughness as possible from the inter-
face formed between the two phases. A cluster analysis
which identifies all the clusters of both phases is then run
for these frozen configurations. For the cluster analysis,
the connectivity is limited to nearest neighbors only.
Each configuration has one large percolating cluster
made up of the boron oxide phase (o;=1), which corre-
sponds to the Vycor porous structure, one large percolat-
ing cluster made up of the silica phase (o;=—1), which
corresponds to the silica background, and a few smaller
clusters of each phase. In all the configurations analyzed,
the largest boron-oxide cluster contains roughly 90% of
all boron “atoms.” This large boron-oxide cluster is an
indication of the presence of an interconnected pore net-
work. A large number of smaller clusters indicates that
the pore network has pinched off into small domains
which are individually coarsening. Also, the
configurations are selected well before the interconnected
pore structure becomes one single spherical cluster. For
instance, the maximum average pore size considered for
the ¢ =124, L =64 system is 18a,, which is much less
than the estimated average pore size of 50a, in the case
of a single spherical domain, assuming it contains rough-
ly 30% of the sites. The process by which the boron-
oxide phase is leached out from the real material is real-
ized in the simulations in the following way. The smaller
boron-oxide phase clusters, which are not connected to
the largest one, are eliminated by flipping the spins so
these clusters become part of the support. The cluster
analysis is run again. There is now a single large boron-
oxide cluster, a large silica cluster, and many smaller sili-
ca clusters. These smaller silica clusters which are em-
bedded inside the boron-oxide cluster are removed along
with the percolating boron-oxide phase, and treated as
the “void” phase. The reason for this is that in the exper-
imental process, the acid dissolves the boron-oxide phase,
and presumably washes out small clusters of silica em-
bedded in the boron structure. Therefore, the final poros-
ity is not exactly 30%, but is close to its original value.
The pore chord size distribution of the final
configurations is then measured. In the case of an infinite
and isotropic material, measuring the chord size distribu-
tion along a given direction is sufficient to obtain a sta-
tistically significant sampling. These ideas do not quite
apply here. As was discussed above, the square lattice is
not isotropic, and the system linear sizes of 64 and 128
are far from what is considered infinite. The measure-
ment of the chord distribution has to be modified in order
to account for these nonideal conditions. Figure 1 illus-
trates the cubic lattice, where x-y (a), x-z (b), and y-z (c)
planes are defined. The pore chord size distribution is
measured for each of these planes (d) along lines drawn at
angles taken in 40 different directions in the interval
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FIG. 1. Illustration of the cubic lattice with

a cut along the (a) x-y, (b) x-z, and (c) y-z
planes. The chord size distribution is mea-
sured for each of these planes (d) along lines

()

/

0°-180°. Figure 1(d) illustrates as an example a scan
along the direction 6=45° and 135° of a plane taken ei-
ther from (a), (b), or (c). The squares represent the unit
area per lattice point, and the gray squares represent the
pore phase, while the white squares represent the silica
phase. The frequency of occurrence of the pore chord
lengths measured by this procedure is recorded, resulting
in a pore size distribution. The average pore length /,, is
obtained for each configuration. In the scaling regime,
the length scale /,, must be greater than the correlation
length £=1—2a,. Consequently, the configurations are
selected such that /,, is between 6 and 144, for g =26,
and between 7 and 18a, for ¢ =124. As additional evi-
dence for the scaling regime, we also verified that the
chord size distribution obtained for each configuration,
when rescaled by [,,, overlap one another. The pore size
distribution shown in the next section for each interac-
tion range considered represents an average over these
seven configurations.

III. SIMULATION RESULTS

We first illustrate how the anisotropy of the interfacial
energy for an Ising model on a square lattice is related to
the range of interaction. The interfacial energy anisotro-
py is depicted in Fig. 2. Figures 2(a)-2(c) represent plots
of the energy cost (y) of a unit interface as a function of
the interface orientation, normalized to the energy cost of
an interface at 0°, in 2D. These plots have been obtained
by numerically counting the number of nearest-neighbor
“bonds” (in units of J) crossing a unit interface at an arbi-
trary angle, normalized to the number of bonds crossing
a unit interface at 0°, leading to a dimensionless quantity
y. Figures 2(a) are for the first neighbor interactions only
(g =4), 2(b) is for the first and second neighbor interac-
tions (¢ =8), and 2(c) is for the first through fourth
neighbor interactions (g =20). The coordinates are
¥ cos¢ and ¥ sing, where ¢ is the coordinate of the unit
normal to the 2D interface (line). Figures 2(d)-2(f) are
the same plot for a 3D lattice, with 2(d) for first neighbor
(g =6), 2(e) for first through third neighbor (¢ =26), and
2(f) for first through eight neighbor (¢ =124) interac-
tions, excluding the eight neighbors which fall outside of
the range of interaction R =2. The full circles represent

drawn at angles taken in 40 different directions
in the interval 0°~180°. (d) illustrates as an ex-
ample a scan along the direction 45°-135° of a
plane taken either from (a), (b), or (c). The
squares represent the unit area per lattice
point, and the gray squares represent the
“empty” phase, while the white squares
represent the silica phase. The chord lengths
measured in this case by the lines at 45° are
2V2, 3v2, 2v2, V2, V2, V2, and V2. The
chord lengths measured by the lines at 135° are
V2,v2,v2,2V2,v2,v2,V2,2V2, and V2.

0=10°, the full squares, 20°, the full triangles 30°, the
solid line 40°, the dotted line 50°, the dashed line 60°, the
long-dashed line 70°, the dot-dashed line 80°, and the dot
long-dashed line 90°, and the angles ¢ and 0 represent the
spherical polar coordinates of the unit normal to the 3D
interface (plane). If the model were perfectly isotropic,
this interface energy cost would be orientation invariant,
i.e., one would obtain a circle (in 2D) or sphere (in 3D) of
radius unity. Instead, one can note large cusps along cer-
tain directions in the interfacial energy plot for the Ising
model with first neighbor interactions in both 2D and
3D. The surface cost along these directions is larger as a
result of the anisotropy, therefore are suppressed by any
energy-minimizing algorithm. The amplitude of these
cusps decreases with increasing the range of interaction,
i.e., from a maximal value of 41.42% for ¢ =4 [Fig. 2(a)]
to 5.29% for g =8 [Fig. 2(b)] to 3.48% for ¢ =20 [Fig.
2(c)] for a 2D lattice; and from a maximal value of
74.53% (for a unit normal in the $ =45° and 6=55° direc-
tion) for ¢ =6 [Fig. 2(d)] to 8.24% (¢$=85, 6=20) for
q =26 [Fig. 2(e)] and to 4.86% (¢=10, 6=40) for
q =124 [Fig. 2(f)] for a 3D lattice. Note that the anisot-
ropy in the nearest neighbor is considerably reduced by
extending the range of interaction to the second (2D) or
second and third neighbors (3D), but extending the range
of interaction beyond that leads to very little improve-
ment.

We now examine the microstructure resulting from the
Ising model with longer range interactions, which we will
qualitatively compare with that for the nearest-neighbor
Ising model. Figure 3 shows a typical 2D cross section of
the Vycor glass as obtained by the procedure detailed in
Sec. II. Figures 3(a)-3(c) are for ¢ =26, while 3(d)-3(f
are for ¢ =124. The pore phase is white, while the silica
background is black. Note how the main structure
shown in Fig. 3(a) (¢ =26) grows preferentially in the
directions 0° and 90°, i.e., along the x and y axes. This
type of structure occurs frequently in Ising models with
nearest-neighbor interactions. However, the degree of
anisotropy in Figs. 3(a)-3(c) (¢ =26) is much less than
for the nearest-neighbor interactions Ising model, i.e.,
8.24% compared to 74.53%. This means that while this
type of structure still occurs from time to time for ¢ =26,
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it is much less frequent than for the nearest-neighbor Is-
ing model. Therefore, increasing the interaction range
restores interfacial energy isotropy in the sense that a
larger number of neighbors decreases the occurrence of
preferential growth along x, y, and z axes.

Before proceeding with the simulation results, we
present in Fig. 4 the experimentally-determined pore
chord size distribution by Levitz and Tchoubar [6].
Their data were obtained by measuring the chord size
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distribution along random directions, using digitized im-
ages of Vycor cross sections. The authors estimated the
accuracy of their chord size distribution measurement
procedure to be good by checking it on basic figures, for
which analytical expressions were available. However,
the smaller chords whose size was less than the discrete
unit (pixel) of the digital Vycor image could not be mea-
sured. Note the presence of a tail in the distribution at
large chord sizes (greater than 200 A). This tail implies
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FIG. 2. (a)-(c) represent plots of the energy cost (v) of a unit interface as a function of the interface orientation, normalized to the
energy cost of an interface at 0°, in 2D. (a) is for first neighbor interactions only (g =4), (b) is for first and second neighbor interac-
tions (¢ =8), and (c) is for first through fourth neighbor interactions (¢ =20). Here ¢ is the polar coordinate of the unit normal to
the 2D interface (line). (d)—(f) are the same plot for a 3D lattice, with (d) for first neighbor (g =6), (e) for first through third neighbor
(g =26), and (f) for first through eight neighbor (g =124) interactions, excluding the eight neighbors which fall outside of the range
of interaction R =2, The full circles represent 6= 10, the full squares 20°, the full triangles 30°, the solid line 40°, the dotted line 50°,
the dashed line 60°, the long-dashed line 70°, the dot-dashed line 80°, and the dot long-dashed line 90°, where the angles ¢ and 6
represent the spherical polar coordinates of the unit normal to the 3D interface (plane).
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(d)

FIG. 3. 2D cross section of the Vycor glass as obtained from
the Ising model with long-range interactions. (a)-(c) are for
g =26, while (d)-(f) are for g =124. The pore phase is white,
while the silica background is black.

that that average chord length (120 A) is much greater
than the chord length at the peak of the distribution (78
A). The fact that chord sizes less than about 10 A could
not be measured, due to this resolution issue, might have
also contributed to an average chord size value larger
than would have otherwise been.

We now turn to the simulation data. First, we show in
Fig. 5 the chord size distribution obtained by measuring
the lengths along directions parallel to the x-y-z axes (full
triangles) versus the chord size distribution obtained by
measuring only along directions at 45°—135° with respect
to the axis (full circles), for a system with linear dimen-
sion L =64 and ¢ =124. f(l/1,,) is normalized so that
the area is unity. The chord length is scaled by /,,, while
the distribution is scaled to f(//1,,)=1,,F(I). The data
seem to lie for the most part on each other, except for the
region close to the peak. Both the peak location and the
peak height of the distributions showed roughly a 10%
discrepancy from each other. This discrepancy seems to
indicate a systematic trend, since each of these two chord
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FIG. 4. The experimentally-determined pore chord size dis-
tribution by Levitz and Tchoubaur (see Ref. [6]). The chord
size R unit in angstroms, while f is the frequency of occurrence
of a chord of size R, normalized to the total number of chords.
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FIG. 5. The pore chord size distribution obtained from the
long-range interaction Ising model and by measuring the
lengths along directions parallel to the x-y-z axes (full triangles)
versus the chord size distribution obtained by measuring along
directions at 45°-135° (with respect to the axis), for a system
with linear dimension L =64 and ¢ =124. The chord length !/
(in units of lattice spacings) is scaled by /,,, where /,, is the
average chord length, while the distribution is scaled to
fU/1,,)=1,F(). f(/1,) is normalized so that the area is
unity.

distributions was averaged over seven configurations
chosen at different times, in the scaling regime. Note
that according to Fig. 2(f), the maximum anisotropy is
4.86% for an interaction range g =124. Consequently,
the 10% discrepancy between the two directions in Fig. 5
cannot be due to lattice anisotropy only. We concluded
that for L =64, the sample is not large enough, such that
measuring the chord length in only one given direction or
in a few random directions does not produce a statistical-
ly significant histogram. It was therefore decided to sys-
tematically measure the chord distribution in 40 different
directions (as described in Sec. II), spanning the interval
0°-180°, in order to gather a histogram truly representa-
tive of the microstructure. In a similar way, the structure
factor S(q,t) is determined by all the wave vectors lying
on a spherical shell of radius lg|, and not only by the
wave vectors along the principal axis of the lattice. The
rest of the chord size distribution data presented in this
section has been obtained by this procedure.

Figure 6 displays the experimental pore chord size dis-
tribution, renormalized to f(I/1,,), keeping the area un-
der the curve unity (solid line), the distribution obtained
from a nearest-neighbor Ising model (dotted line), the dis-
tribution obtained from the g =26 (full triangles), and the
g =124 (full circles) long-range Ising model with linear
dimension L =64. The difference between the experi-
mental results and the nearest-neighbor Ising results illus-
trates the effect of lattice-induced interfacial energy an-
isotropy on the resulting microstructure. Figure 2(d) sug-
gests that a 3D lattice strongly constrains the growth to
occur along the x-y-z axes. This suggests that the result-
ing pores possess a higher aspect ratio, i.e., the pore ra-
dius is much smaller than the distance between pore junc-
tions, as this particular pore morphology would be con-
sistent with the wide variation in chord sizes obtained by
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FIG. 6. Plot of the experimental chord size distribution [7],
(solid line), the distribution obtained from a nearest-neighbor Is-
ing model (dotted line), the distribution obtained from the
g =26 (full triangles), and the ¢ =124 (full circles) long-range
Ising model with linear dimension L =64. The chord lengths
for each distribution have been normalized to their respective
average chord length, and all distributions have been normal-
ized so their area is unity. The error (standard deviation) on
each value f(1/1,,) is between 5 and 15%, and can be as large
as 30% in the tail region (1 /1,, =2).

using the nearest-neighbor Ising model. As isotropy is
restored to the interfacial energy by extending the range
to include ¢ =26 and 124 neighbors, the growth no
longer occurs preferentially in the x-y-z directions, as the
pores now grow in other directions at virtually the same
energy cost. The isotropy of the interfacial energy may
reduce the aspect ratio of the pores, such that the dis-
tance between pore junctions is now comparable to the
pore diameter. This explanation can account for the nar-
rower chord distribution obtained (see full triangles and
squares). The fact that there is no difference detected in
the pore size distribution obtained from a ¢ =26 and a
g =124 Ising model is in agreement with the surface en-
ergy plots in Figs. 2(e) and 2(f) where the maximum value
calculated for the lattice anisotropy is 8.24% for g =26,
versus 4.86% for g =124.

In spite of the fact that the shape of the chord size dis-
tribution curve obtained from the longer range Ising
models compares very well with the experimental data,
there is a notable shift in the peak location Ip, ie.,
1,/1,,=0.625 for the experimentally-determined chord
size distribution versus 0.95 for the ¢ =26 and 124 Ising
models. This shift can be explained by the fact that the
experimental data display fewer short chords but more
large chords than the simulation data. The relative
“lack” of short chords in the experimental data is at least
partly due to difficulties in resolution. Chord lengths less
than 10 A are not observable, and this effect increases /,,,
hence decreases 1, /1,,. On the other hand, the relative
abundance of short chords in the simulation results could
be due to an increased surface roughness introduced by a
longer range of interaction. However, the lack of large
chords in the simulation data is partially explained in
terms of the small system size. Consequently, the pres-

FIG. 7. Plot of the experimental chord size distribution [7]
(solid line), as compared to the simulation chord size distribu-
tion (full circles) with ¢ =124 and a system linear size L =128.
The chord lengths for each distribution have been normalized to
their respective average chord length, and all distributions have
been normalized so their area is unity. The error (standard de-
viation) on each value f(//1,,) is between 5 and 15%, and can
be as large as 30% in the tail region (1 /1,, =2).

ence of the large chords and the relative absence of the
short chords in the experimental data bring the ratio
1,/1,,=0.625, while for the simulation data, the relative
abundance of short chords and the lack of large chords
increase that ratio close to unity, i.e., [, ~1,,.

In order to verify this last hypothesis, the pore chord
size distribution is measured for a sample with linear size
L =128. The result is displayed in Fig. 7. The solid line
again represents the experimental chord size distribution,
and the full circles represent the simulation chord size
distribution with ¢ =124. The abundance of small
chords is still noticeable in the simulation results. In
spite of that, the location of the peak has now shifted
from 0.95 to slightly less than 0.80, indicating that the
greater system size enables better large chord statistics.

IV. CONCLUSIONS AND FUTURE WORK

We obtained a computer model for Vycor by means of
the 3D Ising model with long-range interactions. The
chord size distribution was first measured along two dis-
tinct directions (0°-90° and 45°-135°) for a system with
linear size L =64. A 10% discrepancy in both the peak
height and location between the two distributions (each
of them averaged over seven configurations) was found,
in spite of the fact the lattice anisotropy in this case
(g =124) is calculated to be 4.86%. This leads us to be-
lieve that part of this discrepancy is related to a sampling
problem, and that measuring the chord lengths in 40
directions uniformly spanning the interval 0°-180° should
improve the histogram statistics.

We compared the pore chord size distributions ob-
tained by measurements along 40 directions in the inter-
val 0°-180° (and averaged over seven configurations) for a
system with linear size L =64 to the experimental and
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nearest-neighbor Ising model results. It is found that the
presence of longer-range interactions ¢ =26 and 124
neighbors restores the interfacial energy isotropy, such
that the shape of the obtained distributions is very close
to the experimental one. The shape discrepancy between
the nearest-neighbor Ising model chord size distribution
and the experimental results was attributed to the strong
lattice-induced interfacial energy anisotropy, calculated
to reach a value as high as 74.53% along a plane with
unit normal ¢=45°, 6=55° for the 3D Ising model with
first neighbor interactions.

Two differences are found between the experimental
and the long-range Ising model chord distributions.
First, the model results seem to display a higher fraction
of the short chords than the experimental results. Keep-
ing in mind that a resolution problem in the digitization
of the Vycor cross-section pictures could have contribut-
ed to this discrepancy, a possible explanation is that the
longer-range interactions introduce surface roughness. If
it is the case, interaction ranges greater than g =124
should definitively not be used, so the interfaces between
the pore and silica phases remain sharp enough. Second,
the model results display a lack of large chords, as com-
pared to the experimental results. This last discrepancy
is related to the finite size of the simulation system, which
prevents a statistically significant sampling of the very
large pore sizes. These two differences contributed to a
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shift in the location of the peak, I,/l,,, which was
around 0.625 for the experimental distribution versus
0.95 for the long-range Ising model results with L =64.
Increasing the system size to L =128 improved the larger
pore statistics, such that the peak position /, /1,, dropped
to a value of about 0.8. This last distribution also showed
a larger proportion of short chords as compared to the
experimental one. Since this distribution was obtained
with the ¢ =124 interaction range, we propose that sur-
face roughness induced by the longer interaction range is
the cause of this large proportion of small chords. We
conclude that lattices with a linear dimension of at least
256 and higher, with an interaction range not exceeding
first, second, and third neighbors (¢ =26) are expected to
yield chord size distributions in agreement with experi-
mental results. Future work includes, in particular, the
investigation by means of simulations of the kinetics
behavior of phase separation of a binary liquid mixture
trapped in the computer model for Vycor developed in
this study.
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Y i Y FIG. 1. Illustration of the cubic lattice with
"""" a cut along the (a) x-y, (b) x-z, and (c) y-z
planes. The chord size distribution is mea-
sured for each of these planes (d) along lines
y S y drawn at angles taken in 40 different directions
- in the interval 0°-180°. (d) illustrates as an ex-
(@) x (b) X (c) ample a scan along the direction 45°-135° of a
plane taken either from (a), (b), or (c). The
squares represent the unit area per lattice
point, and the gray squares represent the
“empty” phase, while the white squares
represent the silica phase. The chord lengths
measured in this case by the lines at 45° are
2V72, 3v2, 2v2, V2, V2, V2, and V2. The
chord lengths measured by the lines at 135° are

V2,v2,v2,2v2,v2,v2,v2,2V2, and V2.
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FIG. 3. 2D cross section of the Vycor glass as obtained from
the Ising model with long-range interactions. (a)-(c) are for
g =26, while (d)-(f) are for ¢ =124. The pore phase is white,
while the silica background is black.




